First-principles modeling of dye-sensitized solar cells: challenges and perspectives.

نویسندگان

  • Frédéric Labat
  • Tangui Le Bahers
  • Ilaria Ciofini
  • Carlo Adamo
چکیده

Since dye-sensitized solar cells (DSSCs) appeared as a promising inexpensive alternative to the traditional silicon-based solar cells, DSSCs have attracted a considerable amount of experimental and theoretical interest. In contrast with silicon-based solar cells, DSSCs use different components for the light-harvesting and transport functions, which allow researchers to fine-tune each material and, under ideal conditions, to optimize their overall performance in assembled devices. Because of the variety of elementary components present in these cells and their multiple possible combinations, this task presents experimental challenges. The photoconversion efficiencies obtained up to this point are still low, despite the significant experimental efforts spent in their optimization. The development of a low-cost and efficient computational protocol that could qualitatively (or even quantitatively) identify the promising semiconductors, dyes, and electrolytes, as well as their assembly, could save substantial experimental time and resources. In this Account, we describe our computational approach that allows us to understand and predict the different elementary mechanisms involved in DSSC working principles. We use this computational framework to propose an in silico route for the ab initio design of these materials. Our approach relies on a unique density functional theory (DFT) based model, which allows for an accurate and balanced treatment of electronic and spectroscopic properties in different phases (such as gas, solution, or interfaces) and avoids or minimizes spurious computational effects. Using this tool, we reproduced and predicted the properties of the isolated components of the DSSC assemblies. We accessed the microscopic measurable characteristics of the cells such as the short circuit current (J(sc)) or the open circuit voltage (V(oc)), which define the overall photoconversion efficiency of the cell. The absence of empirical or material-related parameters in our approach should allow for its wide application to the optimization of existing devices or the design of new ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of azo dye as sensitizer in dye-sensitized solar cells

An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...

متن کامل

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods

In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...

متن کامل

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

متن کامل

Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell

The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...

متن کامل

Investigation of Organic Compounds as Photosensitizer for Dye Sensitized Solar Cells

Two organic compounds (SC-23=(E)-2-Cyano-3-(2,3-dimethoxyphenyl) acrylic acid and SC-25=(E)-2-Cyano-3-(2,5-dimethoxyphenyl) acrylic acid) involving methoxy groups as the electron donor and cyanoacrylic acid group as the electron acceptor have been investigated for dye sensitized solar cells. They shows a short-circuit current density (Jsc) of 2.08 and 1.81 mA cm-2, an open circuit voltage (Voc)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 45 8  شماره 

صفحات  -

تاریخ انتشار 2012